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Need for high resolution, for sea ice, and for a physically consistent solution.

A first ECCO2 solution was obtained using a Green’s function approach to
adjust a small number (~80) of model parameters.

Early science applications include impact of mesoscale eddies on large-scale
ocean circulation, studies of polar oceans, and ocean biogeochemistry,

A follow-on ECCOQO2 solution is being obtained using the adjoint method to
adjust ~10° model parameters.

http://lecco2.org/



Need for high resolution

Eddy-parameterizations are not based upon fundamental principles and fail to
adequately account for flow anisotropies leading to flux errors that accumulate
and change large scale ocean circulation in important ways.

Narrow western and eastern boundary currents make major contributions to
scalar property transports but are not parameterizable. Until they are resolved,
there will be doubts that ocean models carry property transports realistically.

Inability to resolve major topographic features (e.g., fracture zones, sills,
overflows) leads to systematic errors in movement of deep water masses with
consequences for accuracy of water mass formation and properties.

Hill et al., 2007




Need for sea ice

Sea ice affects radiation balance, surface heat and mass fluxes, ocean
convection, freshwater fluxes, human operations, etc.

Sea-ice processes impact high-latitude oceanic uptake and storage of
anthropogenic CO2 and other greenhouse gases.

Inclusion of a dynamic/thermodynamic sea ice model permits fuller utilization of
high-latitude satellite data.
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Kwok et al., 2008



Need for physically consistent assimilation

The temporal evolution of data assimilated estimates is physically inconsistent

(e.g., budgets do not close) unless the assimilation’s data increments are
explicitly ascribed to physical processes (i.e., inverted).

Filtered Estimate: x(t+1)=Ax(t)+Gu(t)+A(t)
x: model state, u: forcing etc, A: data increment

Smoothed Estimate: Data

x(t+1)=Ax(t)+Gu(t)

Data increment: A

7 » time
Model Physics: A, G

|. Fukumori, JPL



Example: Atmospheric Mass Budget

Standard deviation of NCEP surface pressure analysis shows that, on average, 24%
of the atmosphere's mass change is physically unaccounted for (I. Fukumori, JPL).

Change over 6-hours Data Increment
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Atmospheric reanalyses contain huge air-sea flux imbalances. Compare 6.2 cm/yr
freshwater flux imbalance to observed 3 mm/yr sea level rise (P. Heimbach, MIT).

1993-2003 global mean air-sea freshwater flux Heatt

lcm/year]
NCEP/NCAR-I ocean E' — P 15.1
NCEP/NCAR-I ocean E— P — R 6.2



Example: Sensitivity of CO, Sea Air Flux

Filtered estimate of CO, flux
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1992-present Green’s function
optimization of CS510 MITgcm
model configuration

Data constraints:

- sea level anomaly

- time-mean sea level

- sea surface temperature
- temperature and salinity profiles 0.5
- sea ice concentration -

- sea ice motion velocity at 15 m (m/s)

- sea ice thickness

......

Control parameters:

- initial temperature and salinity conditions

- atmospheric surface boundary conditions

- background vertical diffusivity

- critical Richardson numbers for Large et al. (1994) KPP scheme
- air-ocean, ice-ocean, air-ice drag coefficients

- ice/ocean/snow albedo coefficients

- bottom drag and vertical viscosity



Green’s Function Estimation Approach
(Stammer & Wunsch, 1996; Menemenlis & Wunsch, 1997; Menemenlis et al., 2005)

GCM: X(tsq1) = M(x(t)m)

Data: y° = H(x) +¢ = G(m) +e
Cost function: = n'Q'n +eR'e
Linearization: G(n) = G(0) + Gn

G is an nxp matrix, where n is the number of observations in vector y° and p is
the number of parameters in vector . Each column of matrix G can be
determined by perturbing one element of n, that is, by carrying out one GCM
sensitivity experiment.

GCM-data residual: y? = y°— G(0) ~ Gn+te
Solution: n? = PG'R-y¢
Uncertainty covariance: P=(Q'"+GR'G)"’

The solution satisfies the GCM's prognostic equations exactly and hence it can
be used for budget computations, tracer problems, etc.



Assessment of ECCO2 vs GODAE/CLIVAR metrics (H. Zhang)
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Normalized Cost

depth (m)

Assessment of ECCO2 in Arctic Ocean (A. Nguyen)

Arctic cost function reduction
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Assessment of ECCO2 in Southern Ocean (M. Schodlok)

Drake passage transport and variabili’gy
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Modeling of ice shelf cavities (M. Schodlok)
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Example eddying ocean circulation studies
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The role of vorticity fluxes in the dynamics of the
Zapiola Anticyclone (Volkov & Fu, 2008)
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Example Arctic Ocean studies
Sea ice model and adjoint development

o~ J (Campin et al., 2008; Nguyen et al., in press;
‘H:j Losch et al., submitted; Heimbach et al., submitted).

e

Variability of sea ice simulations assessed with RGPS
kinematics (Kwok et al., 2008).

Response of the Arctic freshwater budget to
extreme NAO forcing (Condron et al., 2009).
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Modeling transport, fate and lifetime of riverine DOC in the
Arctic Ocean (Manizza et al., in press).




Example ocean biogeochemistry study

Regulation of phytoplankton diversity by ocean physics
(M. Follows, A. Barton, S. Dutkiewicz, J. Bragg, S. Chisholm, C. Hill, & O. Jahn)

1997/01/01

Chlorophyll-a estimated using a self-assembling ecosystem model




CS510 adjoint optimization during ARGO period (H. Zhang)
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Summary

ECCOZ2 is demonstrating feasibility and utility of physically consistent ocean
data assimilation in the presence of eddies and ice.

A first solution was obtained using a Green’s function approach to adjust a
small number (~80) of model parameters.

Ocean model includes explicit representation of Antarctic ice shelf cavities.

Early science applications include impact of mesoscale eddies on large-scale
ocean circulation, studies of polar oceans, and ocean biogeochemistry,

A follow-on solution is being obtained during the ARGO period using the adjoint
method to adjust ~10° model parameters.

ECCO2 solutions and estimation tools are available at http://ecco2.org/



